## II B. Tech I Semester Regular Examinations, March - 2021 DATA STRUCTURES (Common CSE and IT)

(Common CSE and IT)

Time: 3 Hours Max. Marks: 60

|    |    | Note: Answer ONE question from each unit (5 × 12 = 60 Marks)                                                  |      |
|----|----|---------------------------------------------------------------------------------------------------------------|------|
|    |    | UNIT-I                                                                                                        |      |
| 1. | a) | Write an algorithm to implement Quick sort.                                                                   | [6M] |
|    | b) | Derive the best case, worst case time complexities of the same.                                               | [6M] |
|    |    | (OR)                                                                                                          |      |
| 2. | a) | Sort the array 28, 98,3, 67,87,65 using Insertion Sort, and find the element with key 87 using binary search. | [8M] |
|    | b) | Write pseudo code for merge sort algorithm.                                                                   | [4M] |
|    |    | UNIT-II                                                                                                       |      |
| 3. | a) | Explain the applications of Stacks.                                                                           | [6M] |
|    | b) | Read a list of integers (say $A = \{1,3,5,7,9,2,4,6,8\}$ ) and print them in reverse order using a stack.     | [6M] |
|    |    | (OR)                                                                                                          |      |
| 4. | a) | Explain the implementation of queue operations using Stack.                                                   | [6M] |
|    | b) | Discuss the implementation of Round robin algorithm using a Queue.                                            | [6M] |
|    |    | UNIT-III                                                                                                      |      |
| 5. | a) | Write short note on sparse matrix manipulation using linked list.                                             | [6M] |
|    | b) | What are the various operations performed on a single linked list? Describe them using suitable diagrams.     | [6M] |
|    |    | (OR)                                                                                                          |      |
| 6. | a) | What is a Circular linked list? Mention few advantages and disadvantages of a Circular linked list.           | [6M] |
|    | b) | Why Double linked list is called a two-way list. Explain with a diagram.                                      | [6M] |
|    |    | UNIT-IV                                                                                                       |      |
| 7. | a) | Represent a binary tree using arrays and suggest appropriate formulae to store siblings in a binary tree.     | [6M] |
|    | b) | Write an algorithm to perform insertion operation in a binary tree.                                           | [6M] |

## (OR)

| 8. | a) | Define binary search tree? Create the binary search tree with the following | [6M] |
|----|----|-----------------------------------------------------------------------------|------|
|    |    | elements 12, 19, 46, 37, 88, 96, 20 and then delete 46 and 12.              |      |

b) Explain tree traversing techniques.

[6M]

## **UNIT-V**

9. a) Discuss the properties of a tree and a graph in detail.

[6M]

b) Explain how graphs can be represented with examples.

[6M]

## (OR)

10. a) Explain Prim's algorithm with example.

[6M]

b) Explain how BFS traversing algorithm can be used to check a given graph is [6M] connected or not.

\* \* \* \* \*